

On algebraic curves and surfaces in secondary schools Prof. Dr. Stephan Klaus

Mathematisches Forschungsinstitut Oberwolfach

and University of Mainz

Abstract

- We give some examples of real algebraic curves and surfaces which can be studied in secondary school by gifted pupils.
- This is based on personal experience with several school groups of pupils (talks and workshops) in Germany, France, Portugal and Greece.
- For the visualization of algebraic surfaces, the free software SURFER is used.
- SURFER was developped for the Year of Mathematics in Germany 2008 as part of the MFO's touring exhibition IMAGINARY.
- IMAGINARY has developed to a highly successful, international RPA (Raising Public Awareness) network in mathematics which is an independent non-for-profit company now. SURFER can be downloaded from https://imaginary.org/de

Functions of one variable and their graphs

y = ax+b

- Straight line:
- Standard **parabola**:
- General parabola:
- Parabola with two zeros:
- Cubic Parabola:
- Special cubic parabola:
- Higher powers:
- Hyperbola:

Implicit functions: the circle and the square

• Theorem of Pythgoras:

Distance d of point (x,y) to origin (0,0) satisfies $d^2 = x^2+y^2$

- Circle:
- Square approximation:

• Better approximation:

$$x^2 + y^2 = 0$$

 $x^4 + y^4 = 0$

$$x^{2n}+y^{2n}=0$$
 (the higher is n)

Elliptic curves and other square roots

- Square root of a function f(x):
- Equivalent equation:
- Elliptic curve:
- Lemon curve:

y = √f(x), defined for f(x) ≥ 0 y²-f(x) = 0 y² - x²(x-a) - b = 0 y² + (x-a)³(x+a)³ = 0

The lemniscate

- Definition of the ellipse: set of all points, such that the **sum** of distances to two fixed points (a,0) and (-a,0) is constant.
- Thus: $\sqrt{(x-a)^2+y^2} + \sqrt{(x+a)^2+y^2} = b$
- Show that this gives equation of an ellipse: $Ax^2+By^2 = 1$ (lengthy!)
- Definition of the lemniscate: set of all points, such that the **product** of distances to two fixed points (a,0) and (-a,0) is constant.
- This gives the lemniscate-equation: $((x-a)^2+y^2)((x+a)^2+y^2) = b^2$

Functions of two variables and their graphs

- Graph of z = f(x,y) (*"explicit function"*) is 2-dimensional curved surface
- Example: Plane z = ax+by+c
- Even more interesting: graphs of **implicit functions** f(x,y,z) = 0
- Consider the set of solutions of such an equation, interpret them as points with coordinates (x,y,z) in 3D-space
- Algebraic geometry: f(x,y,z) is a polynomial p(x,y,z) study the geometric properties of the set of solutions p(x,y,z) = 0
- Generically, p(x,y,z) = 0 gives a 2-dimensional object (a surface)

The SURFER software

- Software is adaption of research software in real algebraic geometry
- Real-time visualization of the zero set of a real polynomial p(x,y,z)
- Polynomial degrees up to 20, four parameters
- Can easily be used by non-mathematicians
- SURFER was developed by MFO and three universities for the Year of Mathematics in Germany 2008
- Additional features:

rotation with mouse, scaling, coulors, layers, short movies

Implicit functions: cylinder, sphere and double cone

- **Cylinder** of radius a: $x^2+y^2 = a^2$ (because x^2+y^2 is the square of the distance of (x,y,z) to the z-axis)
- Sphere of radius a: $x^2+y^2+z^2 = a^2$ (because $x^2+y^2+z^2$ is the square of the distance of (x,y,z) to the origin)
- Double cone: $x^2+y^2-z^2 = 0$ (the equation $x^2-z^2 = (x+z)(x-z) = 0$ gives a cross and x^2+y^2 has rotational symmetry around the z-axis)
- Hyperboloid of one (a>0) or two (a<0) sheets: $x^2+y^2-z^2 = a$

Cube and octahedron

- Cube: $x^4+y^4+z^4 = 1$
- Sphere: $(x^2+y^2+z^2)^2 = 1$
- Sphere cube octahedron: $x^4+y^4+z^4+2a(x^2y^2+x^2z^2+y^2z^2)=1$

Further constructions:

union, intersection and rotational symmetry

- The union of two surfaces is given by the product of their polynomials: p(x,y,z)q(x,y,z) = 0
- The intersection of two surfaces is (generically) a 1-dimensional object, given by p(x,y,z)² + q(x,y,z)² = 0. As a 1-dimensional object, SURFER is not suitable to visualize it.
- A small tube of size a>0 around the intersection is given by the following equation: $p(x,y,z)^2 + q(x,y,z)^2 = a$
- If an equation p(x,y,z) = 0 has singularities, these can be smoothened by a small deformation p(x,y,z) = a.
- As $x^2 + y^2$ is the square of the distance of a point (x,y,z) to the z-axis, an equation of the form $p(x^2 + y^2, z) = 0$ has **rotational symmetry** around the z-axis.

Rotational Symmetry (2)

- Rotated lemniscate: $((x-a)^2+y^2+z^2)((x+a)^2+y^2+z^2) = b^2$ (looks like a chemical p-orbital)
- Rotated elliptic curve: (looks like a water drop)
- Rotated lemon curve: (looks like a lemon)

$$y^2 + z^2 - x^2(x-a) - b = 0$$

$$y^2 + z^2 + (x-a)^3(x+a)^3 = 0$$

Rotational Symmetry (3): the torus

- Construction of a torus: rotate a circle (t-a)²+z² = b² around the z-axis, i.e. t² = x²+y²
- Thus t^2 -2at+ a^2 + z^2 = b^2 , insert t^2 , bring 2at to the right
- Gives $x^2+y^2+z^2+a^2-b^2 = 2at$, take square of this equation, insert t^2
- Yields torus-equation: $(x^2+y^2+z^2+a^2-b^2)^2 = 4a^2(x^2+y^2)$
- Big radius a, small radius b, but works also for a≤b (singularities!)

The Year of Mathematics in Germany 2008

- Several scientific years in Germany, e.g. 2005 Einstein-Year
- In 2008: Year of Mathematics
- was the most successful of all scientific years in Germany up to now! (in terms of number of activities and visitors)
- Contribution of MFO: touring exhibition IMAGINARY, which has developped to an international RPA network for mathematics since then, now an independent non-for-profit company
- In 2008 competition to the general audience in Germany via ZEIT and SPEKTRUM (newspaper/serial) on interesting SURFER pictures
- More than 10.000 submissions in one month!
- Many activities since 2008 with more than 2.000.000 real and virtual international visitors in total (https://imaginary.org/de)

Example: Valentina Galata

- Valentina Galata was a 16-year old pupil (in 2008) at a secondary school
- She won several prizes for creating many astonishing SURFER formulas and pictures of *"real things"*
- Her formulas and pictures can be found in a gallery at IMAGINARY

Valentina Galata: cup of coffee

- Formula:
- 0=a*((-1*y+4)3-8)3-1*a*(x2+z2-1)8+64
- 0=(z2)+x2-10+((3*y-7)5)
- 0=((x-3)2+6*(x-3)+9+(y+2)2-2*(y+2)* (z+1.1-1*y*1.2)2+(z+1.1-1*y*1.2)4-0.89*c+c*(b/2)* (x-3)-2*b*c+b*(y+2.3)+(c/3)*(z+1.1-1*y*1.7)+1.1*b)
 0=z2+x2+(y+2.7)4+5*(y+2.7)3+6*(y+2.7)2-4*(y+2.7)-8
- 0=x2+y2+z2-1
- 0=((x-2.4)2+(y+3)2+(z+0.9)2-0.1)*((x-1)2+(y+3)2+(z-2.3)2-0.08)*((x+1)2+(y+3.8)2+(z-1)2-0.06)*((x+1)2+(y+3.3)2+(z+1.8)2-0.2)
- 0=((x+2.7)2+(y-2)2+(z-1.3)2-0.09)*((x-0.1)2+(y-2.5)2+(z-2.2)2-0.2)

Thank you for your attention!

Note: Pictures of graphs were taken from Wikipedia Other pictures: SURFER, Imaginary, MFO